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1. INTRODUCTION

1.1 Background

During the development of launch vehicles, there have been periods of time, especially

in the early years of the space program, when some countries used fins on certain vehicles to

either produce static stability with respect to angle of attack, or to reduce static instability of the

vehicles, or to provide aerodynamic control, or a combination of these purposes. For example,

members of the Saturn family of vehicles had fixed fins [1] to improve their stability

characteristics. Launch vehicles with fins from some other countries are discussed in Section

2 of this report. For several reasons, most probably because of the obvious fact that fins add

weight and because of the good reliability of automatic stabilization using thrust vectoring of

gimballed engine nozzles, the use of aerodynamic surfaces on launch vehicles has decreased

during recent years. A notable exception is the air-launched vehicle, Pegasus [1,2] that uses

aerodynamic surfaces for attitude control and trajectory modification.

In any case, fins were not a part of the original design of the National Launch System

(NLS) 1.5 Stage Vehicle [3] (see Fig. 1.1). However, during the NLS design process, the

possibility of interchanging the locations of the liquid oxygen (LOX) and liquid hydrogen (LH)

tanks was considered and preliminary estimates of the associated savings in structural weight

and plumbing range from 5,000 to 10,000 pounds.

When the locations of the LOX and LH tanks are interchanged, the center of mass of

the NLS 1.5 Stage Vehicle is moved aft, while the location of its aerodynamic center remains

unchanged. This results in a vehicle design that is more statically unstable with respect to a

disturbance in angle of attack than the original. In this context, fins can play two roles. First,

fixed fins added to the rear of the vehicle result in a more aft location of the vehicle's



i!i • ,

,

,i + • ;

aerodynamic center, and thus, a more stable vehicle. Even if the vehicle is statically unstable

at certain Mach numbers before the fins are added and the fins are not large enough to produce

a statically stable vehicle, the addition of the fins will make an unstable vehicle less unstable and

thus easier to control. Second, if the fins can be rotated with respect to the vehicle's body, then

aerodynamic torques that are functions of the deflection can be generated for attitude control.

To summarize, the prospect of converting the weight savings of the new "LOX aft" design into

payload is enough incentive +for further investigation of the use of fins.

r A

!

m m

m

Fig. 1.1 Sketches of an NLS 1.5 Stage vehicle with and without fins.

L

Regarding the negating effect of the weight of fins, recent advances in composite material

technology have resulted in the fabrication of light-weight aerodynamic surfaces for aircraft,

missiles and launch vehicles (e.g., Pegasus). Thus, the weight penalty should be minimal.

From the foregoing, it follows that a decision to interchange the LOX and LH tanks must

2
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be based on a complete analysis of the system, including appropriate fins. The purpose of the

work reported herein has been to support the performance of such an analysis by Marshall Space

Flight Center personnel.

1.2 Report Organization

In the next section, we provide some examples of French, Russian, Chinese, and

Japanese launch vehicles that have utilized fins in their designs. Next, the aerodynamic design

of the fins is considered in Section 3. Some comments on basic static stability and control

theory are followed by a brief description of an aerodynamic characteristics prediction code that

was used to estimate the characteristics of a modified NLS 1.5 Stage vehicle. Alternative fin

designs are proposed and some estimated aerodynamic characteristics presented and discussed.

Also included in Section 3 is a discussion of possible methods of enhancement of the

aerodynamic efficiency of fins, such as, vortex generators and jet flaps.

We consider the construction of fins for launch vehicles in Section 4 and offer an

assessment of the state-of-the-art in the use of composites for aerodynamic control surfaces on

high speed vehicles. We also comment on the use of smart materials for launch vehicle fins.

The dynamic stability and control of a launch vehicle that utilizes both thrust vector

control (engine nozzle gimballing) and movable fins is the subject addressed in Section 5. We

give a short derivation of equations of motion for a launch vehicle moving in a vertical plane

above a spherical earth, discuss the use of a gravity-turn nominal trajectory, and give the form

of the period equations linearized about such a nominal. We then consider feedback control of

vehicle attitude using both engine gimballing and fin deflection.

Conclusions are stated and recommendations made in Section 6. An appendix contains

aerodynamic data in tabular and graphical formats.
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. USE OF FINS ON FRENCH, RUSSIAN, CHINESE,

AND JAPANESE LAUNCH VEHICLES

2.1 General Comments

Many past launch vehicle configurations have included fins and several still do. In most

current vehicles, fins are used only for stability enhancement and not to control the attitude of

the vehicle. In the following subsections, we present some information regarding French,

Russian, Chinese and Japanese launch vehicles that have fins. The majority of this information

was taken from Ref. 1 which is apparently the most complete reference on launch vehicles.

•!

2.2 French Vehicles

We place the Ariane [1] vehicle family under "French" vehicles, because France has

provided the largest percentage of the funding for these European launch vehicles. Actually

around 50 different countries have contributed to the design and construction of the Ariane

vehicles. Ariane 1, 2, and 3, now out of production (see Fig. 2.1), had fins for improvement

in the vehicles' aerodynamic stability. Although no information on the size or construction of

the 4 fins on each of the first three Ariane vehicles was found, they were probably the same size

as those on Ariane 4, i.e., 21 sq. ft. Also, since the construction of Ariane is steel, the material

used for the fins was alos most likely steel. Maximum dynamic pressure for these vehicles

should be about 835 lb/ft 2.
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2.4 Chinese Vehicles

Several of the Long March [1] vehicles have fins. Based on sketches of these it appears

that three different fin planforms and sizes are used. The Long March CZ-1D (CZ for Chang

Zeng) is now out of production. Each of its fins had a trapezoidal planform and an area of

about 25 sq.ft. These fins were probably made of a steel alloy. The Long March 2E is shown

in Fig. 2.2.

The fins used on the CZ-3 vehicles have tapered planforms with swept leading edges and

straight trailing edges. The fins on the CZ-3A and CZ-4 vehicles are also tapered with swept

leading edges and straight trailing edges. The area of each of the fins is about 22 sq.ft. The

CZ-3 and CZ-4 fins are probably made of an aluminum alloy.

8

Loni March 2E
People's Republic of China

FtnArea- E5 ft_

MS-3S-II
Japan

Fin Are-. - 17 ft^2

Fig 2.2 Chinese and Japanese launch vehicles.

6
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2.5 Japanese Vehicles

The Japanese have two launch vehicle families, the H-vehicles and the M-vehicles [1,2].

The H-vehicles do not have fins. The M-vehicles, built by the Aeronautical and Space Division

of Nissan Motor Co., do. The two M-vehicles in current production are the M-3S-II (see Fig.

2.2) and the M-V. Both of these are relatively small, the M-3S-II has a lift-off weight of

136,000 lb while the M-V's launch weight is 287,000 lb. Solid (Rocket) Motors for Roll

Control (SMRC) are built into the fins of these vehicles. The fins are tapered, with swept

leading edges and straight trailing edges. For the M-V vehicles, "[t]he fins are so designed that

they guarantee aerodynamic stability up to Mach 2. Thereafter, the vehicle remains slightly

unstable until separation of the first stage from the rest." [Ref. 1, page 95] The fins on the

M-V vehicle have an area of about 28 sq.ft., while those on the M-3S-II each have an area of

approximately 17 sq. ft. Steel is probably the material used for both types of fins.

More along the line of the modem approaches envisioned by NASA, Ref. 1 gives some

possibilities of M-vehicle growth, On page 102, of Ref. 1, a sketch of a winged vehicle similar

to Pegasus is shown that has a total wing area of 167 sq. ft. The materials suggested for this

Institute of Space & Astronautical Science (ISAS) design are carbon fiber reinforced plastics

(CFRP). The ISAS predicts that the wing surface of this vehicle will produce an acceleration

of 0.2g at 20 ° angle of attack.

• i ¸ •_
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3.1 Basic Static Stability and Control

3.1.1 Forces and Moments

Most launch vehicles are intended to fly at zero angle of attack to minimize aerodynamic

loads including drag. At the same time, it is desired that the vehicle be reasonably insensitive

to winds and that its attitude motion be controllable using thrust vectoring. Thus, conventional

launch vehicles are ordinarily not designed to be extremely statically stable and hence become

very responsive to variations in angle of attack. On the other hand, it is not desirable that a

launch vehicle be extremely unstable with respect to perturbations in angle of attack for the same

reasons as stated above, plus the fact that the vehicle will tumble if control is not maintained.

To illustrate the basics of the situation, we use Fig. 3.1, where we show the axial and

normal forces and the pitching moments on the body (Ab, Nb, and Mb ) and vehicle (A, N, and

M), and the normal force (N.r) on the fins of a rigid body model of a launch vehicle. Also,

shown is the resultant thrust vector _.Fr which we assume acts in the xz-plane at an angle _i, with

respect to the x-axis. The summations of the aerodynamic and thrust forces acting on the

vehicle in the x- and z-directions, respectively, for zero linear acceleration, are

_F_, 'ffi- A b - Ar ÷ Fr cosS.

Fy "_-N b -N r +F TsinS,

(3-1)

(3-2)

•ii!
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Fig. 3.1 Geometry for static stability and analyses.

Also, for zero angular acceleration, the sum of the moments about the y-axis is

_M_ ,- - Ib N b - !r N r + i. F a. sinS° (3-3)

Since the vehicle is axially symmetric, the pitching moment when Nb is zero is also zero.

From the aerodynamic characteristics prediction code (described later in this section), we can

obtain the pitching moment coefficients and the normal force coefficients for the body alone and

the total vehicle. Therefore, we can find the locations of the aerodynamic centers of the body

(a.C.b)

lb = MbfN b (3-4)

and the fin (a.c.f)

Ir _- - Mr/N r (3-5)



If the position of the center of gravity (c.g.) is referenced to the nose of the vehicle, then the

distance le can be found from

(3-6)
1,, = L - xc.s.

where L/s the length of the vehicle and xc.,. is the distance from the vehicle's nose to the c.g.

Once we have the distances lb, le, and If then we can find the moment about any reference point.

We can then find the moment about any center of mass location using Eq. (3-3).

As long as the aerodynamic center of the vehicle is behind the vehicle center of mass,

we say the vehicle is statically stable with respect to a disturbance in angle of attack, or

"statically stable" for short. If the a.c. and c.m. coincide, we say that the vehicle is "neutrally

stable," and if the a.c. is forward of the c.m., we say that the vehicle is "statically unstable."

As noted above, we may not want the vehicle to be statically stable. What is always required,

however, is that the vehicle be controllable.

For a vehicle with both gimballed engines and movable fins, we can discuss

controllability by using the ratio of the moment that can be generated by the engines and the

fins, to the moment that will be generated by a disturbance in angle of attack. The

aerodynamic parts of this ratio are of course related through the dynamic pressure and the angle

of attack. Because our vehicle is statically unstable without fins (and probably with them, unless

they are very large), we define a controllability ratio R as

R = (qSd C,, -F r Ie sinS)/(q.Sd C=_) (3-7)

fill¸

where q. is the dynamic pressure, S is the reference area, and d is the reference length.

10
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Since the pitching moment due to the fins is negative if the fin deflection is zero, it follows that

R is non-positive for zero fin deflection. For positive fin deflection, R is negative when the

gimball angle is positive. The magnitude of R is a measure of controllability. If IR I > 1, there

is more control torque than disturbance torque. We do not require that the fins make the vehicle

statically stable; we only require that they assist the engines in controlling the attitude. Later

in this section, after a discussion of the prediction of aerodynamic characteristics and alternative

designs, we present some example results for various calculations of R.

3.2

initially thought that numerous computer codes would be available

characteristics. However, we found only one, MISSILE DATCOM [4],

Aerodynamics Characteristics Prediction

When we were tasked to recommend designs for fins for the NLS 1.5 Stage vehicle, we

for prediction of

that seems to give

good results. We checked the operation of MISSILE DATCOM by using a separate code,

AERODSN [5], to predict aerodynamic coefficients for a simple configuration. We also

compared some results from MISSILE DATCOM with published test data. Wind tunnel tests

would also be helpful in checking the validity of the program. One problem with MISSILE

DATCOM is that it cannot (at least as far as we can tell) be used to model a missile design that

included shrouding around the engines. Therefore, our model of the NLS 1.5 Stage vehicle does

not include shrouds.

J ,

iii: _

r

i ¸

11
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3.3 Geometrical Characteristics of the NLS 1.5 Stage

A sketch of the NLS 1.5 Stage vehicle is presented in Fig. 3.2.

characteristics are given in Table 3.1; others are given on Fig. 3.2.

All dimensions

in feet.

['l
I I

16.67

171.13

27.58

186.88

268.44

248.86

Some of the vehicle's

: /!

Fig 3.2 Sketch of the NLS 1.5 Stage vehicle.

12



Table 3.1 Geometrical Characteristics of the NLS 1.5 Stage Vehicle Model.

il,

_ii_i_!i̧

? •

i_ )

Length: 268.44 ft

Reference Area 593.96 ft 2

Reference Diameter: 27.4 ft

Moment Center: 256.62 ft

3.4 Estimated Aerodynamics of the NLS 1.5 Stage Vehicle.

Estimated aerodynamics of the NLS 1.5 Stage Were calculated using MISSILE DATCOM

for the configuration without fins and the vehicle with fins. Initially, we used 100 ft 2 fins and

tried a variety of planforms and airfoil sections which are illustrated in Figs. 3.3 and 3.4. A

comparison of the data for these 15 fins lead to the selection of a triangular planform and a

lenticular, or "arc" cross section. From several computer simulations it was determined that,

for a given surface area, a triangular planform results in a greater aft movement of the vehicle

aerodynamic center than the others. The arc airfoil section appeared to be better for reducing

wave drag.

A moment reference center at 256.62 ft from the vehicle's nose was chosen so that

comparisons of the estimated data to data from wind tunnel tests could be made. Normal force

coefficients ( CN ) versus angle of attack (oq) for the "body alone" (meaning the vehicle without

fins) are shown in Fig. 3.5 for a range of Math numbers. Corresponding pitching moment

coefficients ( C, ) are given in Fig. 3.6. Tabulated data is given in the Appendix.

13
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0.5

' MACH#
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...... 1.4

......................1.65
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Note that, for the chosen moment reference, the vehicle is very unstable with respect to

angle of attack disturbances. Also, even though the slopes of the C,, versus _ for more forward

reference points are not as steep, we found that, for even the most forward possible c.g.

position, the vehicle alone was statically unstable.

Due to the need to limit structural weight, we have considered the effects of adding

reduced size fins (50 ft 2) on the normal force and pitching moment coefficients. Initially, NASA

proposed using fins with a surface area of 100 ft 2. The results from this portion of our

investigation are illustrated in Figs. 3.7 and 3.8. These show Cm as a function of Otx for three

different Mach numbers and a range of fin deflection angles. We note that the slopes of the Cm

versus _ curves are reduced by the addition of the fins. Perhaps more importantly, we note that

the deflections of the fins result in zero pitching moments for angles of attack less than about

0.1 °. This means that, to a limited extent of course, the fins may be used to control the

vehicle's attitude. That is, the fins can be used to "trim out" angle of attack perturbations less

than about 0.1 ° if the e.g. were at the moment reference center near the aft end of the vehicle.

Actually, the c.g will be much further forward, say at a distance of 212 ft from the vehicle nose.

For this reasonable e.g. location, we obtained the control ratio plot shown in Fig. 3.9. THis

plot is for a fixed angle of attack of 4 °. A relatively simple computer program was provided

to NASA that can be used to calculate IR I for parameters of interest.

Note that with no fin deflection, the engine gimball angle to trim ( IR I = 0) at oh = 4 °

is around 4.2 °. For a 6 ° fin deflection, only a 3.8 ° gimball angle is needed. This is around

a 10% decrease in the gimball angle. For more forward e.g. positions the fins help more in two

ways: (1) they make the vehicle less unstable and (2) they provide a larger control torque.
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3.5 Vortex Generators

.ii _

Vortex generators have become widely employed as a method for controlling the

boundary layer characteristics. For most purposes, boundary layer control is important in

preventing premature separation of the boundary layer and the resulting loss of airfoil

effectiveness. This is especially important on control surfaces such as those to be utilized on the

NLS.

Several methods have been employed to produce vorticity in the boundary layer. In initial

investigations, small obstructions (fins), mounted vertical to the flow surface, were placed

upstream of a rapidly thickening boundary layer in a region of pressure rise (See Fig. 3.10) [7].

Such an area commonly occurs on the aft section of an airfoil, just downstream from the center

of lift. The fins were placed with angles of attack relative to the flow at the surface creating

trailing vortices. When such vortices are shed, the high momentum of the freestream fluid is

entrained into the boundary layer which increases its kinetic energy. By energizing the fluid

contained in the boundary layer in this manner, the "mixing" mechanism of the boundary layer
I

is enhanced and separation is forestalled. It should be noted that for the NLS application, a

turbulent boundary layer is assumed so there is no requirement for "tripping" the boundary

layer.

Other methods of energizing the boundary layer include the addition of higher energy

flow. Partial removal of boundary layer fluid at the surface will also serve as a method of

delaying separation. Both of these methods are much more complex than conventional vortex

generators, and their effectivenesses are harder to predict, especially in the supersonic regime.

More research into this area is required before such mechanisms could be recommended for an

NLS application.
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As demonstrated in Fig. 3.11, several different types of obstructions have been developed

which will produce the desired vortex structure. Types of conventional generators include the

constant chord, stepped chord, wedge-type, and "christmas tree" generators. Cylindrical devices

protruding into the flow have also been employed to generate counter-rotating vortices. Other

vortex generation methods include wedges, ramps, scoops, and tapered fins, all with varying

degrees of effectiveness.
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Fig. 3.11 Examples of vortex generating devices.

The actual effectiveness of vortex generating systems in the supersonic flow field that

would be encountered on the NLS is yet to be determined. The complexities of the interaction

of the vortices and the shock waves require much more research than time permitted within the

scope of this investigation; however, a literature research is under way. Conversations with

various authors of documents relating to the subject are also being initialized. The use of Auburn

University's supersonic wind tunnel facilities is also being considered for a systematic study of

various supersonic vortex generating systems if future investigations were warranted.

24



SECTION 4. FIN CONSTRUCTION

4.1 General Comments

One reason fins are not used on launch vehicles is that they add weight and thus decrease

payload. This is especially true if the fins are fabricated of steel or even a light weight alloy.

However, advances in the state-of-the-art in composite materials have resulted in the capability

for manufacturing very light weight, structurally strong aerodynamic surfaces for aircraft [7] and

launch vehicles [1]. Moreover, advances in the field of "smart structures" will foreseeably

produce the capability for producing aerodynamic control surfaces that adapt to changing

conditions (pressure, temperature, etc.) in such a way that additional damping is produced within

the structure and/or its natural frequency is modified.

In this section, we present a review of some of the literature on the use of composite

material in high-speed aircraft and launch vehicles and on the use of smart materials.

z
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4.2 Use of Composites in High Speed Aircraft and Launch Vehicles

4.2.1 General Comments.

Primary structures manufactured from composite materials are becoming increasingly

common in both commercial and military aerospace vehicles because they provide the designer

with the potential to dramatically reduce structural weight and the total manufacturing costs of

a structural component compared to an all metallic design. The term "potential" is emphasized

here to indicate that composite materials are different from metals and must be treated differently

during the design phase if full potential for weight and cost savings is to be realized. Many

early aerospace structural designs employing composite materials simply replaced standard
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aluminum alloys with the "new" composite materials without really changing the overall design

geometry or philosophy. Such designs are referred to as "black aluminum" designs. It is not

surprising that such a procedure rarely led to a substantial reduction in the weight or cost. The

successful use of composite materials in structural design requires a new design philosophy, one

that concentrates on the utilization of the composite material's high. strength-to-weight and

stiffness-to-weight ratios coupled with the unique ability of these materials to allow for the

fabrication of large, complex, low part count structures [8].

During the late 1960's and the 1970's composite materials were used sparingly in

aerospace structures and then only on secondary structures. However, since the early 1980's

composites have been used to replace metals in several primary aerospace structures [9]. Some

of the recent commercial composite structures fall into the category of large aerodynamic co_ntrol

surfaces such as vertical and horizontal stabilizers. In the military and space arena, some recent

fighter aircraft (the F-22) and commercial launch vehicles (the Pegasus air-launched vehicle)

employ fairly large composite wing designs. As pointed out in Section 2, the Japanese are

planning to use composites in the form of Carbon Fiber Reinforced Plastic (CFRP) in an

advanced M-Vehicle.

The four designs reviewed in this section were selected as typical of large aerodynamic

control surface structures. They are the designs of the Airbus A310, Lockheed L-1011,

McDonnell Douglas DC-10 vertical stabilizer and of the delta wing for the first stage of the

Pegasus launch vehicle [8,9,10].

4.2.2 Airbus A310 Vertical Stabilizer

Airbus was the first commercial manufacturer to use composite materials for a primary

structure in a production aircraft. Between 1980 and 1985, the vertical stabilizer for the A310
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aircraft was designed and manufactured out of a carbon/epoxy composite material. This design

resulted in significant cost and weight savings, and the elimination of environmental corrosion

as a major problem in the component.

Figure 4.1 shows the 27'3" high, 25'7" wide (maximum chord width) composite vertical

fin. The use of composite materials resulted in a 22% weight reduction as compared to the

original aluminum stabilizer, and a decrease of almost 2000 parts (only 95 parts were required

compared to 2076 parts used in the aluminum counterpar0. This reduction in complexity,

combined with an automated production process, provided a significant reduction in assembly

and manufacturing costs.

The assembly process is begun by wrapping the prepreg [a ready-to-mold product

consisting of the reinforcement material (carbon fibers) and partially cured matrix material

(epoxy resin)]around three-piece aluminum modules that constitute the web of the stringers and

the rib shear tie. The prepreg is then pressed onto the mold to form the external skin and the

stringer bottom flange. The aluminum modules are then assembled into the mold and

unidirectional prepreg tape is laid on the stringer (spanwise) to form the upper flanges. The part

is then ready for curing in an autoclave, a closed vessel that applies pressure and heat to cure

the part. The pressure is applied to the skin and stringer flanges by the autoclave and to the

stringer webs by thermal expansion of the aluminum modules. A large number of similar

modules are then set in a fixed grid to form the fin.

4.2.3 Lockheed L-1011 Vertical Fin

The Lockheed Co. selected composites in the design of their L-1011 vertical fin box.

The original all-metal fin design was modified to incorporate a large amount of composite

material so that the final design was a hybrid of composite and metallic materials. Layers of
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Fig. 4.1 A310 composite vertical stabilizer assembly.
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unidirectional prepreg tape were used to form laminates for the skins because this type of design

possesses better mechanical properties than aluminum and can be implemented in an automated

layup process. This results in a considerable redution in fabricating costs. A tape laying machine

is especially effective in significantly lowering the costs of fabrication of flat, single curvature

composite parts such as the NLS fins. These machines use pre-impregnated unidirectional tape

and are the most attractive form in terms of cost and production properties. By utilizing this

method, Lockheed was able to reduce the number of ribs from 17 (all-metal) to 11 (hybrid).

The basic structure is illustrated in Fig. 4.2.

The three upper ribs were solid graphite/epoxy laminates with integrally molded caps and

bead stiffeners. Integral molding involves laying up and curing parts as a single, complex,

continuous structure. This eliminates the need for many mechanical fasteners thereby reducing

the overall weight and complexity of the structure. The eight lower ribs combined

graphite/epoxy caps with extruded aluminum truss webs. The covers are solid laminates with

integral co-cured hat stiffeners, which is lighter than a honeycomb structure. Co-cured parts are

those in which laminates are cured and simultaneously bonded to some other prepared surface

during the same cycle.

4.2.3 McDonnell Douglas DC-10

McDonnell Douglas used yet another manufacturing method in the DC-10 vertical

stabilizer. "It is formed from honeycomb sandwich skins and a four-spar and thirteen-rib

substructure as shown in Figure 4.3. The skins are graphite/epoxy facesheets over Nomex core,

with two plies on the outer surface and one on the inner surface. The spars and ribs are made

of graphite fabric/epoxy sine wave webs in most areas.
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4.2.4 Pegasus Wings

Pegasus, the small, air-launched,

possesses a winged first stage booster.

vehicle produced by Orbital Sciences Corporation,

The wing is a one piece delta configuration that is

subjected to substantial aerodynamic loading during flight. The wingspan is approximately 13

feet and the maximum chord dimension is approximately 8 feet. Scaled Composites, Inc.

designed and constructed the Pegasus wings, which are composed almost entirely of composite

materials. In the wing design and construction, the manufacturing flexibility of composite

materials was used to produce a lightweight and low part count structure.

4.2.5 Summary

In summary, the design and fabrication of large aerodynamic control surfaces employing

composite materials is no longer limited to experimental programs. Commercial production of

these large composite structures is well established and they are becoming almost as common

as metallic structures in the aerospace industry. Significant weight and cost reductions can be

realized as long as the full flexibility of these materials is used to advantage during the design

process. Furthermore, the ability to design and fabricate this type of composite structure is no

longer limited to the large aerospace contractors. Small and medium size companies have also

developed the expertise required to successfully produce various aerospace vehicles component

parts including fins, wings, and control surfaces.

• • c
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4.3 Smart Materials and Structures

4.3.1 General Comments

Smart materials and smart structures are new concepts in materials and structural design.

The smart materials concept involves the development of materials that respond in predictable

ways to stimuli such heat and electrical current. Smart structures are systems composed of

smart materials that have been integrated into the microstructure of the system. The end result

is expected to reduce the structure's size and decrease the energy expenditure required to foster

adaptive functionality [11]. For example, the integration of actuators, sensors, and controls

within a material or structural component creates a smart structure. Craig A. Rogers, from the

Center of Intelligent Materials Systems and Structures at Virginia Polytechnic Institute and State

University, suggests the following analogies of smart structural system components and various

human body systems: actuators, or motors, behave like muscles; sensors have the architecture

and processing features similar to the nervous system and memory; and communication and

computational networks represent the motor control system and are analogous to the brain [8].

4.3.2 Applications of Smart Structures

Since smart structures are capable of sensing their surroundings and adapting to them,

they offer many applications in the aerospace industry. For example, beam-like structures, such

as wings and propeller blades, can be designed utilizing smart structure "technology to actively

damp vibrations. Wings, propellers, and helicopter blades can be shape-controlled, thus

eliminating the need for flaps or ailerons as a means for attitude control. Loads can be

redirected within a structural element through active strain resistance, thus extending fatigue life.

An added benefit would be that strains within a structure could be monitored and recorded. The

advantages of such applications are numerous:
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- Lighter, smaller vibration control of structures.

- Increased fatigue resistance.

- Increased efficiency, maneuverability, and speed of aircraft wings and propellers.

- Monitoring of a structures "health" status.

- Ability of wings/structures to adapt to changing temperature, speed, and weight.

4.3.3 Key Technologies

Additional advancement of smart structural systems technology depends upon research

in a vast array of subjects including composite materials, controls, fiber-optics, metal alloys,

microelectronics, and many others. The critical areas of smart structures deal with the

development of actuators, sensors and control methods. The latest in each of these fields is

detailed below. -

i,i!i_i_

i¸!_./

Actuator Materials

- Shape Memory Alloys (SMA's):

Shape Memory Alloys retain the ability to reverse strains that have been induced. The

heating of SMA's above their phase transformation temperature causes .these strains to be

recovered. An electric resistive heater is normally employed to heat the structure. Constraining

the resulting strain reversal allows large forces to be generated. Nickel-Titanium alloys that

have been developeci allow strains of up to 8% to be reversed [12]. Copper-based alloys allow

up to 4% of strain reversed [11]. Copper-based alloys allow up to 4% of strain reversal [8],

at one-tenth the cost of Nickel-Titanium. However, shape memory alloys are typically

characterized by slow response times as compared to some of the other actuating materials.

- Shape Memory Alloy Hybrid Composites:

SMA hybrid composite materials contain SMA fibers or films that can be stiffened or
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controlled by heat. Two techniques have been developed using SMA hybrid composites [12].

"Active Property Tuning" allows for the tuning or modifying the model response of a structure

by heating the SMA fibers embedded in the composite. In the application of another technique,

termed "Active Strain Energy Tuning," SMA fibers are placed in a structure in such a way that

there are no resulting deflections when activated. Instead, the structure is placed in a residual

state of strain: The resulting stored strain energy changes the model response of the structure

[131.

Hybrid composite materials developed at Virginia Polytechnic Institute and State

University employ Nitinol (__ckel Titanium alloy, patented at the N._aval Ordnance Laboratory)

fibers embedded in a graphite epoxy prepreg. These hybrid composites were used to test a

variety of applications including natural frequency testing, acoustic control testing, and transient

vibration control testing [15]. The results of each of these tests will be discussed below.

For all of the test procedures, the Nitinol fibers were induced with a 5 % strain prior to

being embedded in the graphite epoxy matrix. Because the maximum service temperature of the

graphite epoxy is 300 ° F, the composite material was tested from room temperature up to

300°F. For the natural frequency tests, a nitinol hybrid composite beam was heated, and the

natural frequencies for the first three modes of the beam were monitored. Fig. 4.4 illustrates

the increase of the natural frequencies as temperature increased.

:!_!i_•I:_I
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Fig. 4.4 Natural frequency versus temperature.

For acoustic control testing of the hybrid composite material, sound radiation of a

vibrating beam was actively controlled by shifting the beam resonances away from harmonic

disturbance frequencies. A closed-loop control system sensed input from a microphone to adjust

the beam natural frequencies in orderto damp out disturbances. Fig. 4.5 shows the time history

of the damping of a 35 Hz disturbance frequency. This control system was used to minimize

disturbance frequencies up to 324 Hz.

!1

I"
i

20 ,10 60 IO IW 120 140

J

Fig. 4.5 Harmonic disturbance damping.
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Another study was performed at Virginia Tech to determine the control power, •authority,

and frequency response for an actuator design used to control beam vibrations. In this

application, the nitinol fibers were actively heated via electrical resistivity and then cooled either

actively or passively. Fig. 4.6 shows the free vibration time history as well as the closed-loop

control response of the first bending mode of a cantilever beam.
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Fig. 4.6 Controlled versus uncontrolled vibration.

Shape Memory Polymers:

Shape memory polymers are materials capable of large, reversible changes in elastic

modulus across the glass transition temperature. With shape memory polymers, an increase in

temperature allows the material to become more flexible [11].

- Electrorheological (ER) fluids:

ER fluids are materials that maintain the ability to alter their flow characteristics [15].

This is done by the introduction of an electric field. ER fluids consist of particles dispersed in

a carrier fluid, and their response to an electric field is a progressive gelling proportional to the

electric field strength. The fluid is free-flowing with no field present, but stiffens as field

strength increases. ER fluids are noted for fast response times on the order of milliseconds.

37



i__iii!

,i 'Y _ I_ _

i̧ _

i_ ,,

- Piezoelectric and Magnetostrictive actuators:

Piezoelectric materials are capable of exerting mechanical forces in response to an applied

voltage. This occurs as the materials change shape when their electrical dipoles spontaneously

align in electric fields, causing deformation of the crystalline structure. Constraining these small

deformations generates large mechanical forces proportional to the applied voltages [11].

Magnetostrictive actuators act similar to piezoelectrics, but respond to magnetic rather than

electric fields [11].

4.3.5 Sensors

Optical fibers:

Optical fibers can be used extrinsically, or intrinsically, in sensing applications of smart

structures. Extrinsic use implies •that a the fiber-optic doesn't act as a sensor, but merely

transmits light. When the light path is broken, position changes can be detected. Intrinsic

optical fiber sensing relies on changes in light transmission characteristics. NASA Langley has

been researching such technology since 1979 [11].

There are numerous advantages to using fiber-optics as sensors:

immunity to electrical and magnetic disturbances.

high transmission rates.

unidirectional signal if desired.

simple signal multiplexing by a variety of means.

- Piezoelectric materials:

Piezoelectric ceramics and polymers can be used as smart structure sensors because they

produce a measurable electric charge when subjected to mechanical stresses. Polymers can be

formed into thin films and bonded to many surfaces. Ceramics, however, are of more limited
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use due to their brittleness.

4.3.5 Processing and Controls

Adaptive controls and neural networks are currently under development to allow the

capability to process information and control smart structural systems.

4.3.6 Current Progress.

Several smart structural systems are under development throughout the United States

[13]. Numerous research efforts exist to develop shape memory alloy and SMA hybrid

composite applications. At Martin-Marietta Space Systems in Denver, a vibration damping

system for the Space Shuttle antenna mast has been developed using shape memory alloys. At

Catholic University of America in Washington, D.C., SMA hybrid composites are being used

to alter the shape of helicopter blades. At Georgia Tech, SMA hybrid composites are used for

a different application involving helicopter blades where stiffening fibers are activated to damp

vibrations when detected. Researchers at Virginia Tech in Blacksburg have designed a SMA

composite beam that is capable of contracting to heal cracks. At Michigan State, researchers are

currently developing a prototype helicopter main rotor blade that damps vibrations using

electrorheological fluids embedded within the structure [14].

Several research efforts are underway concerning piezoelectric actuators and sensors.

At the University of Maryland, piezoelectric sensors and actuators embedded in a helicopter

blade serve to combat vibrations [15]. Similar applications are also being researched at Georgia

Tech [12]. At MIT, piezoelectric ceramic material serves as an actuator in a helicopter blade

system with a flap that rises and falls to compensate for changes in lift [15]. Innovative

Dynamics has designed a wing de-icing system using piezoelectric film to sense changes in with

vibration signature resulting from ice buildup [14]. Finally, at Grumman Aircraft in Bethpage,
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f N. Y., a smart hydraulics system using Terfenol-D, a magnetostrictive alloy, is being developed

for the control of aircraft flight surfaces. The alloy is being used to change the shape of the

wings in-flight in order to maximize efficiency [14].

4.3.6 Summary

The concept of a smart structural system has numerous applications to the aerospace

industry. Advantages include improved efficiency, structural adaptability, as well as health

monitoring of structural systems. The technology behind this concept has been tested and

developed for a number of applications by a variety of researchers, and work continues in the

exploration of this field. The use of smart materials in the construction of fins for advanced

launch vehicles appears to be a good idea.
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5. DYNAMIC STABILITY AND CONTROL

5.1 Introduction

One of the tasks set for completion during this project was to perform a "rigid body

dynamic stability analysis" of the LOX-Tank-Aft NLS 1.5 Stage vehicle with fins. This section

contains a description of the model used as a basis for the required analysis and some typical

results based on estimated aerodynamic characteristics. Exhaustive studies of stability and

controllability were not undertaken due to the lack oi _ test data and the limited scope of this

effort.

5.2 System Model

5.2.1 Assumptions

The stability analysis of the motion of the LOX-Tank-Aft NLS 1.5 Stage vehicle

with fins is based primarily on the following assumptions:

1. The earth can be modeled as spherical with an inverse-square gravity field.

2. The rotation of the earth may be neglected.

3. The launch vehicle is a structurally rigid body, but its mass and moments of inertia

are time-varying.

4. The motion of the launch vehicle to be considered is restricted to a fixed vertical

plane so that the vehicle has three degrees of freedom, two in translation and one

(pitch) in rotation.

5. The deflection of the fins and/or the gimbaling of engines do not affect the

motion except through the changes in external forces and moments (The thrust is

treated as an external force.).

6. The motion of the vehicle for which stability is to be investigated is a typical

gravity-turn launch trajectory.

7. Stability of the motion can be determined by considering the stability at various

points along the trajectory.

}_i ....
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* Since the vehicle is statically unstable, active control using the engines and/or

aerodynamic surfaces is assumed.

5.2.2 Model and Equations of Motion

The model we have adopted is depicted in Fig. 5.1. The spherical earth has center E and

radius RE. The position of the center of mass of the vehicle is located using the radial distance

R and the "latitude" Z,. The attitude of the vehicle is defined by the pitch angle 0 (measured

with respect to the local vertical ) and the angle E. The vehicle pitch rate Q is

Q _._ .£ (5-1)

and, since R .. Ri, where i is one of the triad of unit vectors attached to the local vertical

coordinate system, the velocity of the center of mass of the vehicle is

Also, we may write the velocity as

v ,, 1_ ,. l_ i - R _f_ (5-2)

v - vi (5-3)

where V is the speed and 1 is one of the triad of unit vectors attached to the "wind," or

velocity, coordinate system Cxw ywz,, • From the geometry of Fig. 1, we also have

V = V cos T_ -V sin T___ (5-4)
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Fig. 5.1 Vehicle model and notation.
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It follows from Eqs. (5-2) and (5-4) that

#. =V cosy

and

,,. (V siny)/R
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Now, the angular velocity of the launch vehicle may be written as

(5 -7)

where __ is one of the triad of unit vectors attached to the Cxyz body-fixed coordinate system

that is fixed in the launch vehicle with its x-axis along the longitudinal axis of the vehicle. Thus,

from Eqs. (5-1), (5-6), and (5-7), we have

ffi Q - {V sin y)/R

Equations (5-5), (5-6) and (5-8) are the required kinematic equations.

We can apply Newton's second law of motion and treat the thrust force F_.r

external force, to write the translational equation of motion as

as an

(5-8)

where _g ffi- gg(Rg/R) 2 '_i_v, gg

R= RE, and

mV_..= mg + F__A+ Fr

is the value of the gravitational acceleration at

(5-9)

or

F__ = X ! ÷ Z __ (5-10)

F__ =-D --_| -L --_f¢ (5-11)

//

In Eq. (5-11),

equations,

D is the drag, L is the lift, and X and Z are related to D and L through the
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X _-Dcos_ +Lsin cx (5-12)

and

Z - - D sinot - L cosct

where a is the angle of attack of the longitudinal axis of the vehicle.

(5-13)

Note that only when there

is no ambient wind O.x= o_ (i.e.O.x is caused by the motion of the vehicle only).

The thrust may•be written as

F.r ,, (F r cosg,) [ -(F v sing,) _ (5-14)

where _i, is the gimbal angle. Note that even through the launch vehicle has six engines that

can be individually gimballed, we assume here that all are gimbaled the same amount, in the

same direction, to control pitching motion. This assumption may easily be removed by changing

F r in Eq. (5-12) to the value of the thrust used for pitch control if that is less than F-r, or by

defining the thrust of each engine using a separate gimbal angle.

The time rate of change of the angular momentum of the vehicle (neglecting the effects of

internal flow) is equal to the external torque. Since we are considering flight within the sensible

atmosphere, we neglect the gravity-gradient torque to get

-%n, (5-15)

-_ , '/ ,i • ,

where

Here, l,

Cy ,, M - Fv_ sing, (5-16)

is the moment arm of the thrust and the aerodynamic pitching moment, M, can be

expressed as-
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M ffi1/2 pSdW'C. (5-17)

In Eq. (5-17) p is the atmospheric density, S is the reference area, d is the reference length and

C, is the aerodynamic pitching moment coefficient. We can write C,. as

C. ffi C_(_,M,5 t) + c. (_-v)Qd " C.,( d)d_+ 2V
(5-18) •

where 17_ois the "static" part of Cm, C.. is the pitch damping derivative, and c,., is the change

in Cm due to the time rate of change in angle of attack.

We may use the fact that O = _ + 7 and collect the above equations and write the

following set:

1_ _V cost

_, = (V/R)sin y

mV_ffi-m(_/]R)sin T +mg sin y_F r sin(ct_ +8) +L

mV.ffi "-mgcos7 + F r cos(oq, ÷ 5,)

mV_t,-mVQ ÷ m(VZ/R)sin y -mg sin y "F r sin(o_,_)--L

(5-19)

Equations (5-19) are of the form,

__ =_f__, v_, 0
(5-20)

where X = ( R _, T V _ Q)T is the state vector ("state"), and U = (_5cfif)r is the control

vector ("control"). The time, t, appears explicitly because of the time-varying properties of the
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system.

5.2.3 Linearized Equations

Let X*(0 and _U*(t) denote nominal state and control, respectively. Then, we may set X

= X*(t) + x and U = _U*(0 + u, where x and u are perturbations in the state and control,

respectively. Next, we may expand both sides of Eq. (5-19) and drop all terms that are

nonlinear in elements of x and/or u to get the linear matrix equation,

_sAx+Bu (5-21)

where A ffi(bf/bX) x.. and B ffi(bf/b_x___- are the system and control matrices,

respectively.

5.3 Computer Program and Preliminary Results

A computer program has been written in the C language to (a) integrate the nonlinear

equations of motion, (b) calculate numerical approximations to the system and control matrices,

and (c) determining the quasi-steady stability characteristics of the system when different

feedback control laws are used. Here, by "quasi-steady" we mean that the stability is

determined by using the matrices A and B evaluated at particular times.

At the beginning of this project, it was planned that aerodynamic data from wind tunnel

tests would be available for the final static stability and control and dynamic stability analyses.

Because these data were not available, we have not conducted extensive analyses. However, as

we did for the static analysis presented supra, we used the estimated aerodynamic data to obtain

some representative results.

ii; i _/,:
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5.3.1 Nominal Trajectory

We integrated the nonlinear equations of motion holding oq = 0 and generated a nominal

trajectory. For the integration, we used the data given in Table 5.1. The mass, moments of

inertia, thrust and c.m. position were varied with time in a piece-wise linear manner. The

trajectory is shown in Fig. 5.2, while the time histories of the state variables, except that for

oq which is zero, are shown in Figs. 5.3 to 5.5. This trajectory is not exactly the same as any

of those generated by NASA for the NLS, but it is representative and suitable for our purposes.

We have used nominals like this because we need more information than that usual!y provided,

i.e., we need the nominal, plus the system and control matrices.
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Fig. 5.2 Gravity-turn nominal trajectory.
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Table 5.1 Physical Characteristics of the NLS 1.5 Stage Vehicle for Dynamic Analysis.

J

•_, •i•:

TIME (SEC) WEIGHT(LBS) MOMENT OF INERTIA,

0 1972653. 124326000.

65 1449316. 103155496.

128 933563. 90071384.

MACHNUMBER THRUST(LBS)

0.61 3491867.00

0.80 2913900.75

0.90 2965691.25

0.94 2985669.25

1.07 3033270.50

1.12 3051234.25

1.17 3068509.25

1.26 3093054.00

1.41 3123076.25

1.66 3161505.75

MACH NUMBER

2.02

2.19

2.49

2.71

2.99

3.43

3.78

4.16

4.52

5.01

THRUST (LBS)

3199134.25

3212174.25

3227807.00

3234955.50

3240632.25

3244574.00

3247423.00

3248522.75

3899016.25

3899394.00

i•i _
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Fig. 5.5 Vehicle pitch rate, Q.

5.3.2 System and Control Matrices

The system and control matrices are calculated in the computer program using a forward

differences method because the form of the aerodynamic data is such that analytical partial

derivatives can not be found. The A and B matrices at times 10 see and 60 see in to the flight

are presented in Table 5.2. Note that due to the changes in mass, moment of inertia, and thrust

magnitude, there is a good deal of variation in the matrices and consequently in the eigenvalues

of A that are also shown in Table 5.2. The principal unstable mode is a divergence in pitch that

has a time-to-double of about 3.533 see at t= 10 see. The time to double of this mode

decreases to 0.721 sec at t -- 60 sec. The control power matrix (B) also varies with time.

Elements b_l and b61 are "control powers" associated with the thrust. The elements b51 and b6_

are measures of the normal acceleration pitch acceleration, respectively, generated per radian
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of engine deflection

element a_5 is the "over turning acceleration" per radian of angle of attack.

a65

At t = 60 sec, for example, b61 = -1.6999 On the other hand, the

At t = 60sec,

0.96352.

Of great interest here is the control power due to the deflection of the fins. This is

determined by b52 and b62. The ratio b6Jb61 is a measure of the effectiveness to the fins as

compared to the engines. At t= 60 see., from the estimated aerodynamic data, we predict that

this ratio is about 0.03377. Although the absolute value of the torque due to the fins is smaller

than that due to the engines, it is large enough to be of considerable benefit in controlling the

unstable vehicle.

5.3.3 Effect of an Angle of Attack Perturbation.

Winds aloft are a major source of perturbations of launch vehicle motion. To see how

a small perturbation will affect an uncontrolled vehicle we picked the "gust angle of attack"

shown in Fig. 5.6. This was applied in our simulation beginning at t = 0. The trajectory is

shown in Fig. 5.7. It is grossly different than the nominal one. In Figs. 5.8 and 5.9, we have

plotted the pitch angle and pitch rate, respectively. Time histories of the other state variables

are provided in Figs. 5.10 through 5.11.

! ,_,,:
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Table 5.2 System and Control Power Matrices for Selected Times - Nominal Trajectory.

t-- 10sec

A

0 0 -3.0868E--1 1.0 0 0

-7.1093E-16 0 1.719E-'5 4.1358E--11 0 0

r.1094E'-16 0 8.9421E-2 -2.1523E-7 1.7784E-1 0

0 2.7502E-2 0 -9.9863 0

0 0 --8.9439E-2 2.1519E-7 --1.7784E--1 1

.9462E--13 0 0 -2.1773E--11 1.0227E-1 --8.6732E-3

I0 0 1.6506E--1 0 "1.6506"E--1 --1.6151
B'r lo0 2.947E-3 -3.1983 -2.9470E-3 -2.5443E-2

Eigenvalues of A: 0,-4.0068E-1, 1.9532E-1, 1.1686E-1,-4.3393E-6, 4.4034E-6

• i:̧ , : • _, ;
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Table 5.2 (continued)

t = 40 sec

A I

0 0 -4.001

-9.1157E-15 0 5.4642E--5

9.1157E-15 0 2.8050E-2

3.1420E-5 0 1.1243E--1

0 0 -2.8105E--2

8.6691E--13 0 0

9.9999E -1

1.6682E--10

--8.5972E"8

6.6340E-3

8.5805E--8

-6.3342E--12

0

0

7.5657E-2

-2.5947E2

-7.5657E-2

5.4920E-1

0

0

0

0

1

_.3291E_

r

=l 0 0 5.1999E-2 0BT [o0 6.7141E--3 4.7548E1

-5.1999E-2 -1.5366

-6.7141E--3 --1.8008E-1

Eigenvalues of A: 0, -7.7859E-1, 7.0258E-1, -3.1962E-3, 9.8304E-3, 2.8162E-2
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5.3.4 Feedback Control

Because the vehicle is unstable with respect to an angle of attack, we must use some type of

feedback if we want to achieve anything close to a nominal trajectory for comparison purposes.

For the sake of simplicity, we decided to feedback oq and Q. This assumes that _x and Q can

be measured. The pitch rate can be measured with a rate gyro, but the angle of attack of the x-

axis will probably need to be estimated using the z-component of acceleration. Thus, we focused

on a feedback control law of the form:

:i i i _- •

!i . ,'

• , (

where Q° is the nominal pitch rate. To date we have neglected Q°. There are several methods

that can be used to find the gain matrix K. We first tried a pole placement method from

MATLAB Control System Toolbox, but we were not pleased with the results. We than decided

on the established "root locus" method in which we first fixed the pitch rate gains at zero and

then varied the gains on oq. Using this method and some intuition, we settled on the following

gain matrix:

I"° ]
0.5

K"

|1 .s o .s

>

The closed-loop trajectory generated using K is shown in Fig. 5.12 and other state variables are

plotted in Figs. 5-13 through 5-16. The steadily increasing pitch angle is due to the use of a

feedback law that does not include pitch angle feedback, or feedback of the integral of the pitch

angle. Adding such feedback terms is relatively straightforward and the objective of this exercise
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to show that the engines and fins will effectively control the attitude motion of the vehicle has

been achieved. In the next phase, we will devote more time to the attitude control and guidance

aspects.
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6. CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

The analysis we have conducted supports the use of fins on the LOX-Tank-Aft NSL 1.5

Stage vehicle. We considered a large number of fin planforms and airfoil sections and chose

the best performing combination. Based on our predictions of the vehicle's aerodynamics, four

fins of 50 ft_ planform area each will not stabilize the vehicle with respect to perturbations in

angle of attack, but the fins will decrease the instability of the vehicle significantly. More

importantly, if the fins are movable, by deflecting them, the vehicle can be trimmed at small

positive and negative angles of angles of attack. This means that the fins can be used to

counteract small perturbations in angle of attack and to assist in counteracting large magnitude

disturbances.

A static control, or trim, parameter R was defined as the sum of the torque due to thrust

vectoring and the torque due to the fins divided by the aerodynamic torque on the vehicle

without fins ("body alone"). For reasonable center of gravity positions, the fins provide an

additional 10 to 20% of "control power."

The construction of aerodynamic surfaces for launch vehicles was considered and an

indication of the state-of-the-art provided. It appears that carbon fiber reinforced plastics

(CFRP) are a good choice for fins that will be exposed to temperatures no higher than 476 °F

(stagnation temperature at Mach 2). For higher temperature applications, say up to 745 °F

(stagnation temperature at Mach 3), more expensive titanium composites could be used. A

combination of titanium leading edges with CFRP surfaces would also be a consideration to be

examined.

A dynamic stability and control analysis of the NLS 1.5 Stage vehicle with four 50 ft 2fins
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was conducted. NLS data was used in a digital computer code to (a) produce a nominal gravity-

turn trajectory, (b) compute system and control power matrices for the associated linear system

and calculate the eigenvalues of the system matrices. A simple linear feedback controller that

uses both thrust vectoring and fin deflections was developed to control the vehicle's attitude and

successfully tested in the nonlinear simulation.

6.2 Recommendations

The following recommendations are made:

lo The use of movable fins on next generation launch vehicles should be

considered further.

. The planned wind tunnel tests of a model of the NLS 1.5 Stage vehicle
should be carried out early in FY 1994 to determine if the predicted

aerodynamic are qualitatively correct.

o Further investigation of vortex generators for the fins and/or the vehicle

are recommended.

. Additional analytical work should be done to model the flexibility of the

launch vehicle as well as sloshing of fuel and oxidizer.

So Additional analytical work should be done to determine the effects of

vehicle flexibility and sloshing when fins are used to assist in the control

of the vehicle.

. Additional consideration should be given to the construction of the fins and

to estimating the weights of the fins and the actuators.

0 Depending on the success with which the MISSILE DATCOM code

predicted the aerodynamics of the NLS 1.5 Stage vehicle, additional effort

should be expended to determine if a better prediction code exists. If it

is determined that a suitable code does not exist, then an attempt should

be made to modify MISSILE DATCOM so that it produces adequate

results.
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F3BLN.XLS in f3256w CM, and CN for body alone

arcfin3, A=50, XCG=256.62

MACH

CM for body alone

alpha 0.2 0.4 i.I 1.2 1.4 1.65 1.8 2

0.5 0.0942 0.0942 0.i022 0.I028 0.1665 0.1725 0.1733 0.1706

1 0.1897! 0.1897 0.2062 0.3355 0.3475 0.349 0.34360.2074

0.4322

0.6 0.9

0. 0942 0. 0951

0.1897 0.1915

0.3916 0.3952

0.8296 0.837

1.2914 1.3026

2 0.3916 0.3916 0.4294 0.6887 0.7127 0.7158 0.7049

4 0.8296 0.8296 0.9239 0.9308 1.4385 1.4863 1.4925 1.4709

6 1.2914 1.2914 1.4527 1.4643 2.2114 2.2828 2.2921 2.2597

CN for body alone

MACH

alpha 0.2 0.4 0.6 0.9 i.i 1.2 1.4 1.65 1.8 2

0.5 0.0193 0.0193 0.0193 0.0194 0.0205! 0.0203 0.0287 0.0298 0.0301 0.0295

1 0.0389 0.0389 0.0389 0.0392 0.0415 0.041 0.058 0.0602 0.0609 0.0597

2 0.081 0.081 0.081 0.0816 0.0874 0.0865 0.1207 0.1251 0.1265 0.124

4 0.1741 0.1741 0.1741! 0.1753 0.1918 0.1904 0.2576 0.2663 0.2691

6 0.2737 0.2737 0.2737 0.2755 0.3054 0.3036 0.4012 0.4141 0.41821

0.2642

0.411
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F3CN.XLS in f3256w CN, arcf3, A=50, XCG=256.62

-,4

'-4

J

P___._____

0.5

1

2

4

8

0.4

0.5

1

4

(

0.(

0.!

0.

0.

1.

0.

3 4 5 E ? sz

0.064? 0.076_ 0.0883 0.0998 0.1111 0.12211

0.0929 0.104_ 0.1162 0.127_ 0.1388 0.14951

0.1518 0.1634 0.174_ 0.1858 0.1965 o.2o67_._1
0.2??8 0.2881 0._991 0.305 0.3182 0.3269.___...._.__]]

0.4023 0.412_ 0.4211 0.4303 0.438_ 0.4456

0.0659 O.O?B: 0.0! 0.101" 0.113] 0.1243

0.0943 0.106: 0.118: 0.129_ 0.140_ 0.1518

0.1534 0.165: 0.1761 0.181 0.1981 0.2089

0.2i 0. 290 0. 301, 0. 311; 0. 320: 0. 3289

0.404! 0.414 0.423 0.43: 0.439_ 0.4471

0.068' 0.08 0.093 0.105 0.117 0.1284

0.097_ 0.109 0.121 0.133 0.145 0.156_

0.157 0.i_9 O.1B 0.192 0.203 0,2134

0.284 0.295 0.305 0.315 0.324 0.332!

0.40 0.41| 0.42? 0.435 0.443 0.4_

0.076 0.09] 0.104 0.12C 0.134 0.147_

0.107 0.12: 0,131 0.1_( 0.14 0.177_

0.170 0.18_ 0.191 0.21_ 0.22_ 0.230:

0. 304 0.311 0.3: 0.34 ! 0. 354 0. 365

0.435 0.44' 0.45! 0.471 0.48( 0.489

0.08_ 0.09 0.11 0.13_ 0.14! 0.160

0.11! 0.13 0.1 0.161 0.17 0.192

0.18, 0.19 0.21 0.23 0.2 0.259

0.33_ 0.34 0.36 0.3? 0.38 0. 402

0.48_ 0.49 0.$2 0.53 0.544

I
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F3CN.XLS in f3256w CN, arcf3, A=50, XCG=256.62

degs -8 -7 -6 -5 -4 -3 -21 -1 0 1 2 3 4 5 6 7 8

1.2!
0.5-0.0827 -0.0692 -0.0555 -0.0416 -0.0274 -0.0131 0.0015 0.0161 0.0307 0.0453 0.0598 0.0741 0.0882 0.1022 0.1158 0.1293 0.1424

i! -0.0522 -0.0386 -0.0247 -0.0107 0.0036 0.0181 0.0326 0.0473 0.0619 0.0765 0.0908 0.105 0.119 0.1328 0.1464 0.1596 0.1726

2 0.0131 0.0269 0.041 0.0553 0.0698 0.0844 0.0991i 0.1137 0.1282 0.1425 0.1566 0.1706 0.1844 0.1979 0.2111 0.224 0.2364

4 0.1573 0_1717 0.1862 0.2008 0.2154 0.2299 0.2443! 0.2585 0.2726 0.2865 0.3001 0.3136 0.3266 0.3394 0.3517 0.36361 0.3751

6 0.3022 0.3168 0.3313 0.3458 0.3602 0.3745 0.3886 0.4025 0.4162 0.4297 0.4429 0.4557 0.46811 0.4801 0.4917 0.5028 0.5134

1.4

0.5 -0.0458 -0.036 -0.026 -0.0159 -0.0056 0.0048 0.0152 0.0257 0.0362 0.0467 0.0571 0.0675 0.0777 0.0878 0.0978 0.1077 0.1173

1 -0.0093 0.0006 0.0106 0.0208 0.0312 0.0416 0.052 0.0626 0.0731 0.0835 0.0939 0.1042 0.1144 0.1244 0.1343 0.144 0.1536

2 0.0677 0.0778 0.088 0.0983 0.1088 0.1192 0.1298 0.1402 0.1507 0.161 0.1713 0.1815 0.1915 0.2014 0.2111 0.2207 0.23

4 0.2339 0.2442 0.2546 0.2651 0.2756 0.2861 0.2964 0.3068 0.317 0.3271 0.3371 0.347 0.3567 0.3662 0.3755 0.3846 0.3934

6 0.3991 0.4096 0.42 0.4305 0.4409 0.4512 0.4615 0.4717 0.4817 0.4917 0.5014 0.511 0.5204 0.5296 0.5386 0.5473 0.5558

1.65

0.5 -0.029 -0.0211 -0.0131 -0.005 0.0031 0.0112 0.0193 0.0275 0.0356 0.0437 0.0519 0.06 0.0682 0.0762 0.0843 0.0922 0.i

1 0.0071 0.0151 0.0231 0.0312 0.0393 0.0475 0.0556 0.0637 0.0718 0.08 0.0881 0.0963 0.1044 0.1125 0.1204 0.1284 0.1361

2 0.0835 0.0915 0.0996 0.1077 0.1158 0.1239 0.132 0.1402 0.1483 0.1565 0.1647 0.1728 0.1809 0.1889 0.1968 0.2046 0.2123

4 0.2478 0.2559 0.264 0.2721 0.2802 0.2883 0.2965 0.3047: 0.3129 0.321 0.3291 0.3371 0.345 0.3529 0.3606 0.3681 0.3755

6 0.4113 0.4194 0.4275 0.4357 0.4439 0.4521 0.4603 0.4685 0.4766 0.4847 0.4927 0.5006 0.5084 0.516 0.5236 0.5309 0.5381

1.8

0.5 -0.0239 -0.0165 -0.009 -0.0015 0.006 0.0134 0.0207 0.0281 0.0354 0.0427 0.0501 0.0576 0.0651 0.0726 0.0801 0.0876 0.095

1 0.0123 0.0197 0.0272 0.0346 0.0421 0.0494 0.0567 0.0641 0.0714 0.0788 0.0862 0.0937 0.1013 0.1088 0.1163 0.1237 0.1311

2 0.0886 0.096 0.1034 0.1108 0.1181 0.1254 0.1327 0.1401 0.1475 0.155 0.1626 0.1701 0.1777 0.1852 0.1927 0.2001 0.2075

4 0.2524 0.2597 0.267 0.2743 0.2816 0.289 0.2965 0.3041 0.3117 0.3193 0.3269 0.3344 0.342 0.3495 0.3569 0.3642 0.3713

6 0.4151 0.4224 0.4297 0.4371 0.4446 0.4522 0.4598 0.4675 0.4751 0.4827 0.4903 0.4979 0.5054 0.5128 0.5201 0.5272 0.5342

2

0.5 -0.0191 -0.012 -0.005 0.0019 0.0085 0.0149 0.0213 0.0277 0.0341 0.0405 0.0469 0.0534 0.0602 0.0671 0.0742 0.0813 0.0883

1 0.0162 0.0233 0.0302 0.0368 0.0433 0.0497 0.0561 0.0624 0.0688 0.0752 0.0817 0.0884 0.0953 0.1024 0.1095 0.1166 0.1236

2 0.0907 0.0974 0.104 0.1104 0.1168 0.1231 0.1295 0.1359 0.1424 0.1489 0.1557 0.1627 0.1699 0.177 0.1841 0.1911 0.1979

4 0.2497 0.2561 0.2624 0.2688 0.2752 0.2816 0.2881 0.2949 0.3019i 0.3091 0.3164 0.3235 0.3306 0.3375 0.3444 0.3512 0.3579

6 0.4075 0.4139 0.4202 0.4266 0.4332 0.4399 0.4469 0.4541 0.4613: 0.4685 0.4757 0.4827 0.4897 0.4966 0.5034 0.5101 0.5167
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F3CM.XLS in f3256w CM, arcf3, A=50, XCG=256.62

!rii  

alpha 0.2 fin deflection (degrees)

degs -8 -7 -6 -5 -4 -3 -2 -1 0 11 2 3 4 5 6 7 8

0.5 0.1167 0.1138 0.1108 0.1078 _ 0.1047 0.1015 0.0984 0.0951 0.0919 0.0887 0.0856 0.0824 0.0794 0.0763 0.0733 0.0704 0.0675

1 0.2101 0.2071 0.2041 0.201 0.1979! 0.1947 0.1916 0.1883 0.1851 0.182 0.1788 0.1757 0.1726 0.1696 0.1667 0.1638 0.161

2 0.4077 0.4046 0.4016 0.3984 0.3953 0.3921 0.3888 0.3856 0.3825 0.3793 0.3762 0.3732 0.3702 0.3672 0.3644 0.3616 0.3589

4 0.8369 0.8337 0.8306 0.8274 0.8242 0.821 0.8178 0.8147 0.8117 0.8086 0.8056 0.8027 0.7999 0.7972 0.7946 0.7922 0.79

6 1.2914 1.2882 1.285 1.2818 1.2787 1.2756 1.2725 1.2694 1.2664 1.2635 1.26071 1.258 1.2554 1.253 1.2508 1.2487 1.2467

0.4

0.5 0.1174 0.1144 0.II13 0.1082 0.105 0.1018 0.0985 0.0952 0.0919 0.0885 0.0853 0.0821! 0.0789 0.0758 0.0727 0.0697! 0.0668

1 0.2107 0.2077 0.2046 0.2014 0.1982 0.1949 0.1916 0.1883 0.185 0.1817 0.1784 0.1753 0.1721 0.1691 0.1661 0.1631 0.1603

2 0.4082 0.4051 0.4019 0.3987 0.3954 0.3921 0.3887 0.3854 0.3822 0.3789 0.3758 0.3727 0.3696 0.3666 0.3637 0.3609 0.3582

4 0.8371 0.8339 0.8306 0.8273 0.824 0.8207 0.8175 0.8143 0.8111 0.808 0.805 0.802 0.7991 0.7964 0.7939 0.7915 0.7892

6 1.2914 1.2881 1.2848 1.2815 1.2783 1.2751 1.2719 1.2688 1.2658 1.2628 1.2599 1.2572 1.2547 1.2523 1.2501 1.248 1.2461

0.6

0.5 0.1186 0.1155 0.1123 0.1091 0.1057 0.1023 0.0988 0.0952J 0.0917 0.0882 0.0847 0.0813 0.078 0.0747 0.0715 0.0684 0.0654

1 0.2119 0.2087 0.2055 0.2021 0.1987 0.1953 0.1917 0.1882 0.1847 0.1812 0.1777 0.1744 0.1711 0.1679 0.1648 0.1617 0.1588

2 0.4091 0.4059 0.4025 0.3991 0.3956 0.3921 0.3886 0.385 0.3816 0.3782 0.3748 0.3716 0.3684 0.3652 0.3622 0.3594 0.3567

4 0.8376 0.8342 0.8307 0.8271 0.8236 0.8201 0.8167 0.8133 0.8101 0.8068 0.8037 0.8006 0.7977 0.795 0.7924 0.79 0.7879

6 1.2914 1.2879 1.2843 1.2809 1.2775 1.2741 1.2708 1.2676 1.2644 1.2614 1.2585 1.2557 1.2532 1.2508 1.2487 1.2467 1.245

0.9

0.5 0.1242 0.1205 0.1166 0.1127 0.1087 0.1046 0.1005 0.0963 0.0921 0.0879 0.0838 0.0798 0.0758 0.0719 0.068 0.0643 0.0607

1 0.2179 0.2141 0.2102 0.2062 0.2022 0.198 0.1939 0.1897 0.1855 0.1813 0.1773 0.1733 0.1693 0.1655 0.1617 0.158 0.1545

2 0.416 0.4121 0.4081 0.4041 0.3999 0.3958 0.3916 0.3874 0.3833 0.3792 0.3752 0.3713 0.3675 0.3637 0.3601 0.3566 0.3532

4 0.8464 0.8423 0.8382 0.834 0.8298 0.8257 0.8216 0.8176 0.8137 0.8098 0.806 0.8023 0.7987 0.7953 0.792 0.7889 0.786

6 1.3026 1.2984 1.2943 1.2901: 1.2861 1.2821 1.2781 1.2742 1.2704 1.2667 1.2631 1.2597 1.2564 1.2533 1.2504 1.2477 1.2452

1.1

0.5 0.1385 0.1338 0.129 0.1241 0.1191 0.114 0.1089 0.1037 0.0985 0.0933 0.0882 0.0832 0.0782 0.0733 0.0685 0.0638 0.0592

li 0.2391 0.2343 0.2294 0.2245 0.2194 0.2143 0.2092 0.204 0.1988 0.1937 0.1886 0.1836 0.1787 0.1738 0.169 0.1644 0.1599

2! 0.4553 0.4504 0.4454 0.4404 0.4353 0.4301 0.4249 0.4197 0.4146 0.4096 0.4046 0.3997 0.3949 0.3901 0.3855 0.381 0.3767

41 0.9356 0.9305 0.9254 0.9202 0.915 0.9099 0.9048 0.8998 0.8949 0.89 0.8852 0.8805 0.8759 0.8715 0.8673 0.8632 0.8593

6 1.4529 1.4477 1.4426 1.4375 1.4324 1.4274 ! 1.4224 1.4175 1.4127 1.408 1.4034 1.399 1.3947 1.3906 1.3867 1.3829 1.3794
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F3CM.XLS in f3256w CM, arcf3, A=50, XCG=256.62

1.2 3 0 0692degs -8 -7 -6 -5 -4 -3 -2 -I 0 1 2 4 5 7 8

0.5 0.1346 0.1304 0.1262 0.1219 0.1175 0 1.131 0.i086 0.1041 0.0996 0.0951 0.0906 0.0862 ! 0.0818 0.0776 0.0733; 0.0651

0.21 0.2055, 0.201 0.1965 0.1921 0.1877 0.1834 0.1791 0.1749 0.1708 0.1668
1 0.2362 0.232 0.2277 0.2234 0.219 0.2145

2 0.4548 0.4505 0.4462 0.4418 0.4373 0.4328 0.4283 0.4238 0.4193 0.4149 0.4105 0.4062 0.402 0.3978 0.3937 0.3897 0.3859

4 0.941 0.9365 0.9321 0.9276 0.9231 0.9186 0.9141 0.9097 0.9054: 0.9011 0.8969 0.8928 0.8887 _ 0.8848 0.881 0.8773 0.8738

6 1.4648 1.4603 1.4558 1.4513 1.4469 1.4425 1.4381 1.4338 1.4296 1.4254 1.4214 1.4174 1.4136 1.4099 1.4063 1.4029 1.3996

1.4

0.5 0.1896 0.1865 0.1834 0.1803 0.1771 0.1739 0.1707 0.1674 0.1642 0.1609 0.1577 0.1545 0.1513 0.1482 0.1451 0.1421 0.1391

1 0.3563 0.3533 0.3501 0.347 0.3438 0.3406 0.3373 0.3341 0.3308 0.3276 0.3244 0.3212 0.318 0.3149 0.3119 0.3088 0.3059

2 0.7051 0.702 0.6988 0.6956 0.6924 0.6891! 0.6859 0.6826 0.6794 0.6762 0.673 0.6699 0.6668 0.6637 0.6607 0.6577 0.6549

4 1.4459 1.4427 1.4394 1.4362 1.4329 1.4297 1.4265 1.4233 1.4201 1.417 1.4139 1.4108 1.4078 1.4049 1.402 1.3992 1.3965

6 2.212 2.2088 2.2056 2.2023 2.1991 2.1959 2.1927 2.1896 2.1865 2.1834 2.1804 2.1774 2.1745 2.1716 2.1688 2.1661 2.1635

0

1.65

0.5 0.1907 0.1883 0.1858 0.1833 0.1808 0.1783 0.1757 0.1732 0.1707 0.1682 0.1657 0.1631 0.1606 0.1581 0.1556 0.1532 0.1508

1 0.3639 0.3614 0.359 0.3564 0.3539 0.3514 0.3489 0.3464 0.3439 0.3413 0.3388 0.3363 0.3338 0.3313 0.3288 0.3264 0.324

0.7054 0.7029 0.7004 0.6979 0.6954 0.6929 0.6905 0.688 0.6857
2 0.7255 0.723 0.7205 0.718 0.7155 0.713 0.7105 0.708

4 1.492 1.4895 1.487 1.4845 1.482 1.4795 1.477 1.4744 1.4719 1.4694! 1.4669 1.4644 1.4619 1.4595 1.4571 1.4548 1.4525

6! 2.2836 2.2811 2.2786 2.2761 2.2735 2.271 2.2685 2.2659 2.2634 2.2609 2.2584 2.256 2.2536 2.2512 2.2489 2.2466 2.2444

1.8

0.5 0.19 0.1877 0.1854 0.1831 0.1808 0.17851 0.1762 0.1739 0.1717 0.1694 0.1671 0.1648 0.1625 0.1601 0.1578 0.1555 0.1532

1 0.3641 0.3618 0.3595 0.3572 0.3549 0.3526 0.3503 0.3481 0.3458 0.3435 0.3412 0.3389 0.3365 0.3342 0.3319 0.3296 0.3273

2 0.7275 0.7252 0.7229 0.7206 0.7184 0.7161 0.7138 0.7116 0.7093 0.7069 0.7046 0.7023 0.6999 0.6976 0.6953 0.693 0.6907
1.47 1.4676 1.4654 1.4631 1.4609

4 1.4977 1.4954 1.4932 1.4909 1.4887 1.4864 1.484 1.4817 1.4793 1.477 1.4746 1.4723

6 2.293 2.2908! 2.2885 2.2862 2.2839 2.2815 2.2792 2.2768 2.2744 2.2721 2.2697 2.2674 2.2651 2.2628 2.2605 2.2583 2.2561

2

0.5 0.1856 0.1834 0.1813 0.1791 0.1771 0.1751 0.1731 0.1711 0.1692 0.1672 0.1652 0.1632 0.1611 0.1589 0.1567 0.1545 0.1524

1 0.3571 0.3549 0.3527 0.3507 0.3487 0.3467 0.3447 0.3427 0.3408 0.3388 0.3368 0.3347 0.3326 0.3304 0.3282 0.326 0.323E

2 0.7152 0.7132 0.7111 0.7091i 0.7072 0.7052 0.7032 0.7012 0.6992 0.6972 0.6951 0.6929 0.6907 0.6885 0.6863 0.6842 0.68_

4 1.4754 1.4734 1.4715 1.4695 1.4675 1.4655 I_4635 1.4614 1.4592 1.457 1.4547 1.4525 1.4503 1.4482 1.4461 1.444 1.441[

9 9_nR _ _S9 2.2569 2.2549 2.2529 2.2508 2.2486 2.2464 2.2442 2.2419 2.2397 2.2375 2.2354 2.2333 2.2311 2.2291 2.22
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Arc Fin3, XCG = 256.62, A = 50, Mach = 1.4
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